Question

Consider the system as shown below

where, y(t)=x(et). The system is

Options :

  1. non-linear and causal.

  2. linear and non-causal.

  3. non-linear and non-causal.

  4. linear and causal.

Show Answer

Answer :

linear and non-causal.

Solution :

Given : y(t)=x(et)

For input x1(et), output will be y1(t)

y1(t)= x1(et)

Multiplying both sides by a scalar quantity ' a'

ay1(t)=ax1(et)  ........(i)

For input x2(et), output will be y2(t)

y2(t)= x2(et)

Multiplying both sides by a scalar quantity ' b'

by2(t)= bx2(et) .........(ii)

Adding equation (i) and (ii) we get

ay1(t) + by2(t) = ax1(et) + bx2(et)  .......(iii)

Let for input ax1(et) + bx2(et), ouput is y3(t)

y3(t)= ax1(et) + bx2(et)

But, ay1(t) + by2(t) = ax1(et) + bx2(et)

∴ y3(t)= ay1(t) + by2(t)

Hence, system satisfies both additivity and homogeneity law.

∴ The system is a linear system.

From the given system y(t)= x(et)

y(0)=x(e0)=x(1)

y(1)= x(e1)=x(e)=x(2.71)

So, present value of output depends on future value of input.

∴The given system is non causal.
Hence, the correct option is (B).

Report
More Similar Tests

Related Tests