Question

Given a function ϕ = 1 2 ( x 2 + y 2 + z 2 ) in three-dimensional Cartesian space, the value of the surface integral ∯S n̂ . ∇ϕ dS where S is the surface of a sphere of unit radius and n̂ is the outward unit normal vector on S, is

Options :

  1. 4π/3

  2. 0

Show Answer

Answer :

Solution :

ϕ = 1 2 ( x 2 + y 2 + z 2 ) , ∯S n̂ . ∇ϕ dS = ?

S = surface of sphere , V = volume of sphere = 4 3 π r 3

r = radius of sphere = 1

ϕ x i ^ + ϕ y j ^ + ϕ z k ^

1 2 ( 2 x i ^ + 2 y j ^ + 2 z k ^ )

x i ^ + y j ^ + z k ^

Using Gauss theorem,

∯S n̂ . ∇ϕ dS = V ∇. ∇ϕ dV

= V(1 + 1 + 1)dV

= 3 ∫ V dV = 3 x  4 3 π r 3

∯S n̂ . ∇ϕ dS = 4π

Report
More Similar Tests

Related Tests