Question

If a = lim x 0 1 + 1 + x 4 2 x 4 and b = lim x 0 sin 2 x 2 1 + cos x , then the value of ab3 is :

Options :

  1. 6

  2. 8

  3. 32

  4. None of these

Show Answer

Answer :

32

Solution :

a = lim x 0 1 + 1 + x 4 2 x 4

= lim x 0 1 + x 4 1 x 4 ( 1 + 1 + x 4 + 2 )

= lim x 0 x 4 x 4 ( 1 + 1 + x 4 + 2 ) ( 1 + x 4 + 1 )

Applying limit a = 1 4 2

b = lim x 0 sin 2 x 2 1 + cos x

= lim x 0 ( 1 cos 2 x ) ( 2 + 1 + cos x ) 2 ( 1 + cos x )

Applying limits b = 2 ( 2 + 2 ) = 4 2

Now, a b 3 = 1 4 2 × ( 4 2 ) 3 = 32

Report
More Similar Tests

Related Tests