Question
If a = lim x → 0 1 + 1 + x 4 − 2 x 4 and b = lim x → 0 sin 2 x 2 − 1 + cos x , then the value of ab3 is :
Options :
6
8
32
None of these
Answer :
Solution :
a = lim x → 0 1 + 1 + x 4 − 2 x 4
= lim x → 0 1 + x 4 − 1 x 4 ( 1 + 1 + x 4 + 2 )
= lim x → 0 x 4 x 4 ( 1 + 1 + x 4 + 2 ) ( 1 + x 4 + 1 )
Applying limit a = 1 4 2
b = lim x → 0 sin 2 x 2 − 1 + cos x
= lim x → 0 ( 1 − cos 2 x ) ( 2 + 1 + cos x ) 2 − ( 1 + cos x )
Applying limits b = 2 ( 2 + 2 ) = 4 2
Now, a b 3 = 1 4 2 × ( 4 2 ) 3 = 32
Copyright © 2025 Test Academy All Rights Reserved