Question

If f ( x ) = 0 x g ( t ) ln ( 1 t 1 + t ) d t and g is odd continuous function and π 2 π 2 ( f ( x ) + x 2 cos x ( 1 + e x ) ) d x = π 2 α 2 α then α is

Show Answer

Answer :

Correct answer is : 2

f ( x ) = 0 x g ( t ) ln ( 1 t 1 + t ) d t

f ( x ) = 0 x g ( t ) ln ( 1 t 1 + t ) d t

f ( x ) = 0 x g ( y ) ln ( 1 + y 1 y ) d y

= 0 x g ( y ) ln ( 1 y 1 + y ) d y

f ( x ) = f ( x ) f is also odd

Now,

I = π / 2 π / 2 ( f ( x ) + x 2 cos x 1 + e x ) d x . . . . ( 1 )

I = π / 2 π / 2 ( f ( x ) + x 2 e x cos x 1 + e x ) d x . . . . ( 2 )

2 I = π / 2 π / 2 x 2 cos x d x = 2 0 π / 2 x 2 cos x d x

I = ( x 2 sin x ) 0 π / 2 0 π / 2 2 x sin x d x

= π 2 4 2 ( x cos x + cos x d x ) 0 π / 2

= π 2 4 2 ( 0 + 1 )

= π 2 4 2

( π 2 ) 2 2

∴ α = 2

Report
More Similar Tests

Related Tests