Question

If the Laplace transform of a function 𝒇(𝒕) is given by s + 3 ( s + 1 ) ( s + 2 ) , then 𝒇(𝟎) is

Options :

  1. 0

  2. 1/2

  3. 1

  4. 3/2

Show Answer

Answer :

1

Solution :

L [f(t)] =  s   +   3 ( s   +   1 ) ( s   +   2 )

The above equation through partial fractions can be written as :

s   +   3 ( s   +   1 ) ( s   +   2 )  =  A ( s   +   1 ) B ( s   +   2 )

s + 3 = A(s + 2) + B(s + 1)

s + 3 = (A + B)s + 2A + B

Comparing co-efficients on both sides, we get

A + B = 1 and 2A + B = 3

We get, A = 2, B = -1

So,  s   +   3 ( s   +   1 ) ( s   +   2 ) 2 ( s   +   1 ) 1 ( s   +   2 )

f(t) = L-1 ( 2 s   +   1 ) - L-1 ( 1 s   +   2 )

f(t) = 2e-t - e-2t

So, f(0) = 2e-0 - e-0 = 2 - 1 = 1

∴ f(0) = 1

Report
More Similar Tests

Related Tests