Question

Let ƒ(x) = x et(t-1)(t-2) dt. Then ƒ(x) decreases in the interval

Options :

  1. x∈ (2.3)

  2. x∈ (1.2)

  3. x∈ (0.1)

  4. x∈ (0.5.1)

Show Answer

Answer :

x∈ (1.2)

Solution :

Given : ƒ(x) = x0  et(t-1)(t-2) dt.

ƒ(x) decreases, that means slope of ƒ(x) means (ƒ'(x)) will be negative.

i.e.,     ƒ'(x)<0     (Slope = d/dx ƒ(x) = ƒ'(x) )

We need to find derivative of ƒ(x)

By Leibnitz rule,

ƒ'(x)= d/dx x et(t-1)(t-2) dt.   ƒ'(x)<0

[ ex(x2-3x+2)(1)-e0(02+0+2)(0)] < 0

(x2-3x+2)< 0

so, 1<x<2

Hence, the correct option is (B).

Report
More Similar Tests

Related Tests