Question
Let, ƒ(x,y,z) = 4x2+7xy+3xz2 .The direction in which the function ƒ(x,y,z) increases most rapidly at point P= (1,0,2) is
Options :
20î + 12 k̂
20î +7Ĵ+ 12 k̂
20î + 7 Ĵ
20î
Answer :
20î +7Ĵ+ 12 k̂
Solution :
Given, scalar point function,
ƒ(x,y,z) = 4x2+7xy+3xz2
Gradient gives the direction in which the directional derivative will be maximum
Grad(ƒ)=∇.ƒ
∇.ƒ= (î∂/∂x+Ĵ∂/∂y+ k̂∂/∂z)(4x2+7xy+3xz2)
∇.ƒ=(8x+7y+3z2)î+(7x)Ĵ+(6xz) k̂
At point, P(1,0,2),
∇.ƒ=(8×1+7×0+3×22)î+(7×1)Ĵ+(6×1×2) k̂
∇.ƒ=20î+ 7Ĵ + 12k̂
Hence, the correct option is (B).
Copyright © 2025 Test Academy All Rights Reserved