Question

Let R be a region in the first quadrant of the xy plane enclosed by a closed curve C considered in counterclockwise direction. Which of the following expressions does not represent the area of the region R?

Options :

  1. cxdy

  2. 1/2∮c(xdy-ydx)

  3. Rdxdy

  4. cydx

Show Answer

Answer :

cydx

Solution :

Green’s theorem, ∮c∅dx+ψdy=∬s(∂ψ/∂x-∂∅/∂y) dxdy

Checking from options,

From option (A) :

cxdy=∬s(1-0)dxdy=∬sdxdy            ( ∅=0,ψ=x)     (Area of region R in anticlockwise direction)

From option (B) :

1/2∮c(xdy-ydy)= 1/2 ∬s(1-(-1))dxdy         ( ∅=-y,ψ=x)

                             =1/2 ∬s2dxdy = ∬sdxdy        [Area of region R in anticlockwise direction]

From option (C) :

cdxdy= Area of region R

From option (D) :

cydx=∬s(0-(1))dxdy                ( ∅=y,ψ=0)

           =∬-1dxdy= -∬dxdy        [Area of region R in clockwise direction]

Hence, the correct option is (D).

Report
More Similar Tests

Related Tests