Question

Let X1, X2 be two independent normal random variables with means µ1, µ2 and standard deviations σ1, σ2, respectively. Consider Y = X1 – X2; µ12 =1, σ1=1,σ2= 2. Then,

Options :

  1. Y is normally distributed with mean 0 and variance 1

  2. Y is normally distributed with mean 0 and variance 5

  3. Y has mean 0 and variance 5, but is NOT normally distributed

  4. Y has mean 0 and variance 1, but is NOT normally distributed

Show Answer

Answer :

Y is normally distributed with mean 0 and variance 5

Solution :

µ12 =1, σ1=1,σ2= 2

x1 and x2, are two independent random variables

                                          Y=X1-X2

                                          µ (Y)=µ(X1-X2 )

                                                   = µ(X1)-µ(X2 ) = µ12  = 1-1 = 0

                                          Var (Y) = Var (X1 — X2)

                                                        = Var (X1) + Var (X2) - Cov(X1,X2)

Since X1, and X2, are independent variables

                                         Var(Y) = Var(X1) + Var(X2)

                                                    = σ12+ σ2= 1+4

                                           Var(Y) = 

Report
More Similar Tests

Related Tests